ОЦЕНКА ВЛИЯНИЯ ТОЛЩИНЫ ТОНКОПЛЕНОЧНЫХ МНОГОСЛОЙНЫХ ПОКРЫТИЙ НА ЗНАЧЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ

А.Д. Купцов, С.В. Сидорова

АННОТАЦИЯ

Рассмотрена актуальность изучения и контроля толщины покрытий для оценки влияния на величины остаточных механических напряжений в тонкопленочных слоях и многослойных структурах. Описано технологическое оборудование для формирования диэлектрических и проводящих покрытий в вакууме. Описан принцип измерения толщины тонкопленочных покрытий на зондовом профилометре TR220. Представлены результаты измерения скорости осаждения таких материалов, как: SiO_2 и Al_2O_3 , Cu и Cr.

КЛЮЧЕВЫЕ СЛОВА

ТОНКИЕ ПЛЕНКИ, ТОЛЩИНА, ТЕХНОЛОГИИ, РАСПЫЛЕНИЕ, ОСТАТОЧНЫЕ НАПРЯЖЕНИЯ

EVALUATION OF THIN-FILM MULTILAYER COATINGS THICKNESS EFFECT ON THE RESIDUAL STRESSES VALUES

A.D. Kouptsov, S.V. Sidorova

ABSTRACT

The relevance of studying and checking the coatings thickness to assess the effect on the magnitude of residual mechanical stresses in thin-film layers and multilayer structures is considered. The technological equipment for forming dielectric and conductive coatings in a vacuum is described. Measuring thickness principle of thin-film coatings using the TR220 probe profilometer is described. The results of measuring the deposition rate of such materials as: SiO₂ and Al₂O₃, Cu and Cr are presented.

KEYWORDS

THIN FILMS, THICKNESS, TECHNOLOGIES, SPUTTERING, RESIDUAL STRESSES

ВВЕДЕНИЕ

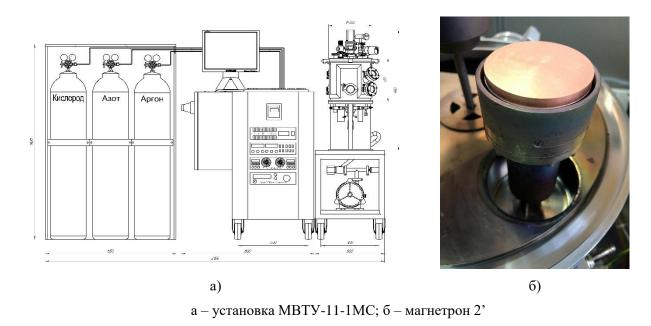
Остаточным напряжениям подвержены как однослойные, так и многослойные тонкопленочные покрытия. Многослойный кластер позволяет обеспечить требования к надежности и функциональным возможностям формируемых деталей. Кроме того, последовательность из пленок полупроводник-металл-диэлектрик подвержена влиянию остаточной напряженности, которая может быть распределена как на границе раздела пленки с подложкой, так в пространстве между ними. Многие работы посвящены исследованию зависимости остаточных механических напряжений от толщины пленочных структур: покрытия Si_3N_4 Si3N4 [1-3], Ti [4], полиэстер [5], Pt [6], Cu [7], Ta [7], Au [7], Cr [8] показали растягивающие напряжения; SiO2 [1, 9], Al [4], Cu [4], Ag [4, 10], Ta [4], алмаз [11], TiN [12], SOS [13, 14], Cr [8] — сжимающие напряжения. При этом характер сжатия или растяжения определяется многими параметрами, в том числе и методами формирования пленки: магнетронное распыление [15, 16], атомно-слоевое осаждение ионным ассистированием [17]. Исследования показывают увеличение

растягивающих или сжимающих напряжений при увеличении толщины пленки, что свидетельствует о важности контроля толщины при формировании многослойных структур

Существуют прямые и косвенные научно-исследовательские решения для определения и контроля толщины пленок и скорости их осаждения с заданными технологическими режимами работы оборудования.

Целью работы является сравнение методов измерения толщины тонкопленочного покрытия для определения средней скорости осаждения материала на подложку.

ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ


Подготовка подложек проводится с помощью жидкостной очистки в ультразвуковой ванне. Щелочные растворы удаляют органические загрязнения с подложки, при финишной очистке происходит ополаскивание в спирте.

Заключительная подготовка подложек происходит в вакуумной камере на базе установки МВТУ-11-1МС, расположенная на кафедре «Электронные технологии в машиностроении» МГТУ имени Н.Э. Баумана [18].

Установка (Рис. 1а.) обеспечивает требования современных лабораторий и чистых помещений: безмасляный высокий вакуум, гибкая система управления, малое время холостых ходов. Форвакуумный насос обеспечивает предварительное разряжение металлической камеры, объемом 22 л. Контроль давления происходит с помощью датчиков APG-100 и WRG. Турбомолекулярный насос откачивает камеру до предельного давления процесса 0,009 Па. Далее газораспределительная система на основе электромагнитных клапанов и регуляторов расхода газа обеспечивает технологическую аргоновую среду в камере и возле технологических источников (ионный источник и магнетронная распылительная система).

Для изучения скорости осаждения покрытий и контроля толщины пленок выбраны диэлектрические материалы и металлы: цельнокомпозитные мишени SiO_2 и Al_2O_3 , Cu и Cr.

Магнетрон MeiVac с мишенями 50.8 мм (Рис. 16.) работает с источником питания на режиме высокочастотной плазмы $(13,56\ {\rm M}\Gamma {\rm u})$.

А.Д. Купцов, С.В. Сидорова Оценка влияния толщины тонкопленочных многослойных покрытий на значения остаточных напряжений [Электронный ресурс] // Вестник РВО. -2024. -№ 1(3) (21.03.2024). - Режим доступа: https://www.vestnik-rvo.ru/issues/2024-01/5960/

Режим работы источника распыления стабилизирован по мощности: 60 и 75 Вт для диэлектрических мишеней и металлических соответственно. Расход газа составляет 30 sccm при каждом процессе. Расстояние мишень-подложка также неизменно – 81 мм. Для измерений толщины покрытий используются подложки из монокристаллического кремния, номинальная шероховатость которых составляет менее 10 нм.

ИССЛЕДОВАТЕЛЬСКОЕ ОБОРУДОВАНИЕ

Для измерения толщины пленок используется зондовый профилометр TR220 (Рис. 2a.).

Рис. 2. Исследовательское оборудование (TR220)

Профилометр TR220 оснащен активным контактным датчиком с высокой точностью. Датчик состоит из зонда с наконечником, который сканирует поверхность и регистрирует изменения высоты в диапазоне от нескольких долей микрометров до десятков микрометров. Основная погрешность прибора 10% позволяет регистрировать высоты с дискретной характеристикой 10 нм.

МЕТОДИКА ИССЛЕДОВАНИЯ

Существуют различные методы измерения толщины пленок, как по физической природе, так и механизму измерений: оптические [19], зондовые [20], механические [21], энергетические [22] и частотные [23]. Каждый из методов имеет свои преимущества и недостатки. Но одно является общим для всех методов — подготовка структуры для измерений: для зондовых и оптических приборов необходимо обеспечить перепад высот, который является толщиной пленки. Существуют различные способы формирования ступеньки: накатка и последующее удаления фоторезиста или термостойкой липой ленты; установка твердого экрана, который плотно контактирует с подложкой — зачастую используют идентичную подложку-маску, которую устанавливают на лицевую поверхность подложки образца; последующее скрайбирование или травление пленки до плоскости подложки.

Для оценки на достоверном уровне необходимо минимизировать эффект от теневого осаждения материала на подложку. Важно формировать переход от подложки к верхней плоскости пленки при минимальном отклонении угла подъема от величины 90°. Прямой угол обеспечивает однозначность разности высот подложки и пленки (актуально для сверхтонких пленок) и достаточность для тех случаев, когда измерение происходит за счет оптических эффектов преломления и отражения света.

Измерения на профилометре проводятся согласно схеме, представленной на Рис. 3.

Рис. 3. Схема измерения зондовым методом

Подготовка ступеньки для измерений происходит за счет установки кремниевой подложки-шаблона на кремниевую подложку-основу. Подложки устанавливаются полированными поверхностями друг к другу и закрепляются на подложкодержателе для предотвращения смещения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Толщина пленочных покрытий определяется скоростью осаждения материала и временем проведения процесса. Так, сформированы зависимости скорости осаждения (нм/мин) и времени осаждения (мин) для измерений на профилометре (Рис. 4. и Рис. 5.). Группировка также проведена по материалам: SiO₂ и Al₂O₃, Cu и Cr.

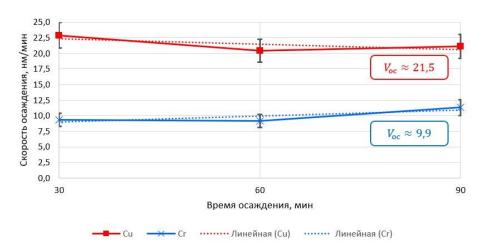


Рис. 4. Экспериментальные зависимости скорости осаждения металлических тонких пленок от времени осаждения

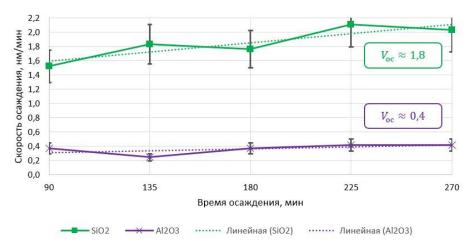


Рис. 5. Экспериментальные зависимости скорости осаждения диэлектрических тонких пленок от времени осаждения

Относительная погрешность измерений не превышает 4,2 % для Cu и 5,1 % для Cr, 5,6 % для SiO_2 и 25,0 % для Al_2O_3 . Возможно увеличить степень точности измерений за счет использования средств измерения с меньшим шагом измерения, а также увеличением количества измерений.

Анализируя полученные зависимости, можно сделать вывод о том, что значения скорости осаждения, имеют непостоянный характер по сравнению с теоретическими данными: толщина пленки прямо пропорциональна скорости осаждения и времени нанесения, значит, что скорость осаждения в единицу времени имеет вид константы. Связано это с тем, что профилометр выдает результат измерений с дискретой измерения 10 нм, следовательно, при малых толщинах пленки (менее 100...150 нм) данный шаг измерения вносит большую погрешность.

Скорость осаждения пленки SiO_2 (в условиях эксперимента) имеет рост, чего в теории не должно происходить. Рост скорости осаждения от процесса к процессу возможен из-за увеличения скорости распыления материала за счет увеличения площади распыления — зоны эрозии мишени, но при этом для аналогичных экспериментов по остальным материалам в данной работе такое явление не наблюдается. С другой стороны, во время процесса происходит увеличение температуры подложки за счет бомбардирования частицами мишени. При увеличении толщины пленки, возможно, происходит изменение температуры в локальных участках подложки, следовательно, происходит изменение плотности и шероховатости слоев пленки, что в результате вносит изменение в расчет скорости осаждения. В работе [24] показано влияние шероховатости пленки SiO_2 на плотность пленки.

ЗАКЛЮЧЕНИЕ

В результате работы подтверждено влияние толщины покрытий на величины остаточных механических напряжений в тонкопленочных слоях и многослойных структурах, состоящих из тонкопленочных слоев толщиной от 100 нм. Представлены результаты формирования распространенных для области микроэлектроники тонкопленочных покрытий SiO_2 и Al_2O_3 , Cu и Cr, и приведены исследования их толщины и скорости осаждения.

В дальнейшей работе планируется изучить распределение толщины пленки по поверхности подложки и провести сравнение эмпирических и теоретических значений толщин для схожих материалов мишени с целью определения допустимого диапазона толщин тонкопленочных покрытий для минимизации остаточных механических напряжений в покрытиях.

ЛИТЕРАТУРА

- 1. Интегрированные технологии функциональных микро-и наноструктур: монография / А. П. Достанко [и др.]; под ред. акад. НАН Беларуси А. П. Достанко. Минск: Бестпринт, 2013. 216 с.: ил. ISBN 985-.
- 2. Новак А. В. и др. Зависимость механических напряжений в пленках нитрида кремния от режимов плазмохимического осаждения //Известия высших учебных заведений. Электроника. 2017. Т. 22. №. 2. С. 138-146.
- 3. Ковальчук Н. С. Пленки нитрида кремния с низкими механическими напряжениями для микроэлектромеханических систем //Доклады Белорусского государственного университета информатики и радиоэлектроники. 2008. № 4 (34). С. 60-65.

- 4. Егоров Г. П. Механические напряжения в металлических пленках при магнетронном осаждении: диссертация на соискание уч ст к.ф-м.н.: спец. 01.04. 07 : автореф. 2018.
- 5. Hasegawa H. et al. Stress-strain measurement of ultra-thin polystyrene films: film thickness and molecular weight dependence of crazing stress //Polymer. 2017. T. 123. C. 179-183.
- 6. Fu D. et al. Thickness dependence of stress in lead titanate thin films deposited on Pt-coated Si //APPLIED PHYSICS LETTERS. 2000. T. 77. №. 10. C. 1532.
- 7. Kraft O. et al. Plasticity in confined dimensions //Annual review of materials research. 2010. T. 40. C. 293-317.
- 8. Daniel R. et al. The origin of stresses in magnetron-sputtered thin films with zone T structures //Acta Materialia. − 2010. − T. 58. − №. 7. − C. 2621-2633.
- 9. Исследование свойств пленок нитрида и оксида кремния, полученных методом плазмохимического осаждения на кремниевую подложку / И.И. Рубцевич [и др.] // Технология и конструирование в электронной аппаратуре. 2011. № 4. С. 29-32. Бібліогр.: 7 назв. рос.
- 10. Sun X. et al. Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering //Thin Solid Films. 2007. T. 515. №. 17. C. 6962-6966.
- 11. Панова, С. П. Влияние подслоя Al-Si-N на остаточные напряжения в поликристаллической алмазной пленке / С. П. Панова // Сборник избранных статей научной сессии ТУСУР. 2018. № 1-2. С. 126-130. EDN YNNBVB.
- 12. Köstenbauer H. et al. Annealing of intrinsic stresses in sputtered TiN films: The role of thickness-dependent gradients of point defect density //Surface and Coatings Technology. 2007. T. 201. № 8. C. 4777-4780.
- 13. Moridi A. et al. Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations //International Journal of Solids and Structures. 2013. T. 50. №. 22-23. C. 3562-3569.
- 14. Liu M. et al. Effects of misfit dislocation and film-thickness on the residual stresses in epitaxial thin film systems: Experimental analysis and modeling //Journal of Materials Research. − 2012. − T. 27. − №. 21. − C. 2737-2745.
- 15. Thornton, J.A. Ann. Rev. Mater. Sci. 1997. V. 7. P. 239
- 16. D.P. Adams, L.J. Parfitt, J.C. Biello, S.M. Yalisove, Z.U. Rek. Thin Solid Films, 266, 52 (1995). DOI: 10.1016/0040-6090(95)00603-6.
- 17. Fu J.K., Atanassov G., Dai Y.S., et al. Single films and heat mirrors produced by plasma ion assisted deposition // Journal of Non-Crystalline Solids. 1997. V. 218. P. 403–410.
- 18. Особенности формирования функциональных слоев тонкопленочных датчиков сопротивления / А. Д. Купцов, С. В. Сидорова [и др.] // Наноиндустрия. 2021. Т. 14, № S6. С. 271-279. DOI 10.22184/1993-8578.2021.14.6s.271.279.
- 19. Harrick N. J. Determination of refractive index and film thickness from interference fringes //Applied optics. 1971. T. 10. №. 10. C. 2344-2349.
- 20. Дедкова А. А. [и др.] Возможности и ограничения метода контактной профилометрии при определении перепада высот для контроля топологических элементов и толщины слоев //Наноструктуры. Математическая физика и моделирование. 2020. Т. 20. № 2. С. 23-40.
- 21. Юрьева А. В. Осаждение металлических покрытий с помощью магнетрона с жидкофазной мишенью: диссертация на соискание уч ст к.т.н.: спец. 01.04. 07 : автореф. 2017.

- 22. Иевлев В. М. и др. Синтез нанокристаллических пленок гидроксиапатита //Конденсированные среды и межфазные границы. 2007. Т. 9. №. 3. С. 209-215.
- 23. Sauerbray G.Z., Use of quartz vibrator for weighing thin films on a microbalance. / Z. Phys. 155 p.206-212, 1959.
- 24. Митин Д. М. [и др.] Свойства пленок кремния, выращенных при разных давлениях в плазмообразующей системе //Физика и техника полупроводников. 2013. Т. 47. №. 9. С. 1276-1278.

СВЕДЕНИЯ ОБ АВТОРАХ

Купцов Алексей Дмитриевич — аспирант 2 года (ORCID 0009-0002-3997-9722). МГТУ им. Н.Э. Баумана, г. Москва, e-mail: alex-kouptsov@yandex.ru

Сидорова Светлана Владимировна – кандидат технических наук, доцент кафедры (ORCID: 0000-0002-3002-1246). МГТУ им. Н.Э. Баумана, г. Москва, e-mail: sidorova_bmstu@mail.ru