ГАЗОДИНАМИКА ИСТЕЧЕНИЯ БИНАРНЫХ СВЕРХЗВУКОВЫХ СТРУЙ РАЗРЕЖЕННЫХ ГАЗОВ

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда

АННОТАЦИЯ

Перспективы освоения околоземного пространства, изучения планет солнечной системы обуславливают необходимость развития наземного моделирования процессов взаимодействия с разреженной атмосферой различного состава струйных течений из сопел управления космическими аппаратами. Возможности моделирования на малогабаритном экспериментальном стенде истечения газов из реальных сопел продемонстрированы на примере истечения сверхзвуковых потоков аргона и азота из бинарной системы сопел при варьировании их взаимного расположения и газодинамических параметров истечения.

КЛЮЧЕВЫЕ СЛОВА

ГАЗОДИНАМИКА, БЛОЧНЫЕ СВЕРХЗВУКОВЫЕ СТРУИ, ВЗАИМОДЕЙСТВИЕ СТРУЙ, КОНДЕНСАЦИЯ, МОДЕЛИРОВАНИЕ НАТУРНЫХ ТЕЧЕНИЙ, ОПТИЧЕСКИЕ МЕТОДЫ ДИАГНОСТИКИ, ФОТОВИЗУАЛИЗАЦИЯ

GAS DYNAMICS OF THE EXPIRASION OF BINARY SUPERSONIC JETS OF RAREFIED GASES

A.E. Zarvin, A.S. Yaskin, K.A. Dubrovin, V.V. Kalyada

ABSTRACT

The prospects for the exploration of near-Earth space and the study of the planets of the solar system necessitate the development of ground-based modeling of the interaction of jet streams of spacecraft control engines with a rarefied atmosphere of various compositions. The possibilities of modeling the outflow of gases from real nozzles on a small-sized experimental stand are demonstrated by the example of the outflow of supersonic flows of argon and nitrogen from a binary nozzle system with varying gas dynamic parameters of the outflow and their relative location.

KEYWORDS

GAS DYNAMICS, BLOCK SUPERSONIC JETS, JET INTERACTION, CONDENSATION, MODELING OF NATURAL FLOWS, OPTICAL DIAGNOSTIC METHODS, PHOTOVISUALIZATION

введение

Методы электронно-пучкового зондирования сверхзвуковых струй разреженных газов достаточно широко используются при проведении исследований неравновесных процессов в газах и газовых смесях. Исследования истечения сверхзвуковых струй разреженных газов проводились с середины прошлого века. Ряд публикаций принадлежит Е.А. Лейтесу (ЦАГИ) [1-2]. В лаборатории разреженных газов Института теплофизики СО АН исследование бимодального истечения было выполнено В.И. Ермоловым с коллегами [3] с целью моделирования откачной способности струй. Авторы рассмотрели возможность использования модифицированного числа Рейнольдса Re_L, в котором вместо параметра отношения давлений $N = P_0/P_{\infty}$ (Re_L = Re*/ $\sqrt{P_0/P_{\infty}}$) был предложен параметр

отношения поперечного размера сверхзвуковой струи D к расстоянию между соплами бимодального блока h (Re_L = Re_{*} · D/h). Были рассмотрены особенности такого обобщения. Влияние конденсации на истечение взаимодействующих струй не рассматривалось. Использованный газ в работе не указан. Анализ бимодальных струй выполнен также в работе ИТ СО РАН, РКК «Энергия» и МФТИ [4]. Сравнение экспериментов, выполненных в ИТ СО РАН в 80-х годах прошлого века, с расчетом для невязкого газа позволили получить обобщающие зависимости для определения плотности газа в зоне взаимодействия двух струй, которые авторы предложили использовать при разработке новых космических аппаратов. Однако авторы отметили, что данные обобщения не являются универсальными и ограничены некоторым диапазоном режимных параметров. Кроме того, подобное исследование на больших экспериментальных установках ИТ СО РАН в настоящее время затруднено вследствие технических и финансовых проблем. Влияние конденсации также не учитывалось.

Расширение пределов возможностей малогабаритного экспериментального стенда ЛЭМПУС-2 Новосибирского государственного университета по диапазону расходов моделируемых потоков, средствам диагностики сверхзвуковых струй при истечении в сильно разреженное пространство (вакуум) обусловило возможность применения известных экспериментальных методов для возобновления моделирования истечения газовых потоков из блочных конструкций различных натурных систем.

В работе получены результаты измерений, выполненных в блочных струях с использованием развитых методик электронно-пучковой диагностики: фотовизуализации, двумерного онлайн-сканирования, а также определения локальной плотности в выбранных зонах взаимодействующих струй спектральными методами. Исследованы результаты истечения аргона и азота за блоком из двух сверхзвуковых сопел с приблизительно одинаковой геометрией при разных расстояниях между соплами. Рассмотрена возможность влияния процесса кластерообразования в струях на газодинамику взаимодействующих струй.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исследования выполнены на экспериментальном стенде ЛЭМПУС-2 [5] отдела прикладной физики физического факультета Новосибирского государственного университета, принципиальная схема и фотография которого представлены на рис. 1а и 16, соответственно. Усилив оснащение высоковакуумной откачной системы стенда дополнительным бустерным турбомолекулярным насосом и третьим гелиевым криогенным насосом удалось повысить скорость высоковакуумной газовой откачки до 0,2 г/с, что приблизило измерения к производительности более крупных газодинамических установок ИТ СО РАН [6-8], но, в отличие от них, в условиях безмасляного вакуума и при значительной экономии энергетических и материальных затрат.

Для изучения газовых струй в широком диапазоне расстояний стенд оснащен четырехкомпонентным устройством перемещения газового объекта (форкамеры с соплом и истекающей через него струей) относительно неподвижного электронного пучка или молекулярно-пучковой системы. Для монтажных работ в камере расширения стенда предусмотрен люк, а для оптических наблюдений установлены два оптических окна.

Основными методами диагностики газовых потоков, отлаженными и используемыми на стенде, являются оптические и молекулярно-пучковые. В настоящей работе использованы оптические средства диагностики: фотовизуализация потоков [9], сканирование [10] и оптическая спектроскопия [11] Все три метода основаны на

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

инициации излучения «холодных» ($T_0 = 300$ К) газовых потоков, истекающих из сопловых источников в разреженное пространство, с помощью высоковольтного электронного пучка. Высокая (порядка 10 кэВ) энергия электронов позволяет получить узкий и хорошо сфокусированный электронных луч, который в комплексе с оптикой (фокусирующие линзы, оптические щели) обеспечивает локальность отбора инициируемого излучения газа, требуемую для спектрометрии и метода сканирования.

a)

б)

Рис. 1. Экспериментальный стенд ЛЭМПУС-2: принципиальная схема (а) и фотография (б). 1 – Основная вакуумная камера, 2 – турбомолекулярные насосы, 3 – гелиевый крионасос, 4 источник электронов с полым катодом; 5 – ось сфокусированного электронного пучка, 6 – коллимирующая диафрагма, 7 – сорбционный высоковакуумный насос, 8 – секция детектора; 9 – квадрупольный масс-спектрометр, 10 – вакуумный датчик, 11 – послескиммерная секция, 12 – гелиевый крионасос, 13 – ось сопло-скиммер-коллиматор-детектор молекулярного пучка, 14 скиммер, 15 – оптическое окно, 16 – форкамера с газовым соплом, 17 – 4-компонентный механизм перемещения форкамеры с соплом

Частичное рассеяние сфокусированного пучка электронов на фоновых частицах, незначительное отклонение электронов пучка при столкновениях с частицами исследуемых газов и дрейф вторичных электронов к заземленному соплу, а также наличие в исследуемом газовом составе не только быстрых переходов, но и долгоживущих возбужденных уровней, позволяет фотографическим методом рассматривать свечение в протяженных газовых объектах за пределами возбуждающего электронного пучка, как вверх, так и вниз по потоку. Фотовизуализация объекта обеспечивает быстрое получение общей картины течения, его особенностей и размеров, в то время как два других метода позволяют получить детальные локальные зависимости, продольные и поперечные, сложных и взаимодействующих струй, а также, при соответствующих тарировочных процедурах, абсолютные значения плотности и температуры.

Для спектральных измерений на стенде ЛЭМПУС-2 используется спектрометр Ocean Optics USB4000 с разрешением ~ 1 нм. Локализация регистрируемого участка исследуемого газового объекта, обусловленная размером щели спектрометра (0.2-1.2 мм), диаметром сфокусированного пучка электронов (примерно 1 мм), с учётом коэффициента увеличения изображения оптической кварцевой линзой не превышает 1 мм³.

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

Основы методики сканирования продольных и поперечных профилей одиночных или блочных струй заложены в работах [12-13]. На стенде ЛЭМПУС-2 эта методика развита на базе современных средств диагностики. Наиболее простой вариант был разработан на основе использования стандартного сканера [14]. В последнее время ведутся успешные работы по применению сканера ООО «ВМК-Оптоэлектроника» с фотодетектором БЛПП-4000 и линейкой фотодетекторов МАСИ-USB [15-16], в том числе для получения, обработки и анализа большого объема данных - двумерныхе массивов полей течения - при исследовании потоков сложных конфигураций.

Фотовизуализация газовых объектов, свечение которых инициировано электронным пучком, осуществляется фотокамерой NIKON D7200 с объективом AF-S Nikkor18-300 mm - в видимом диапазоне длин волн, а также камерой pco.panda 4.2 sCMOS в видимом и УФ – диапазонах [17].

Следует отметить, что вакуумное оборудование стенда позволяет проводить исследования не только в газовых потоках, как в непрерывном, так и в импульсных режимах истечения [18], но и при непрерывном истечении в вакуум жидкостей [19-20].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящем исследовании представлены результаты, основанные на анализе фотовизуализации бинарных струй азота и аргона при варьировании давления торможения P_0 , давления окружающего пространства P_{∞} в зависимости от расстояния между соплами h. Работа является первым этапом исследования, конечными целями которого являются: моделирование взаимодействия струй космических аппаратов с разреженной атмосферой заданного состава, анализ влияния конденсации на форму, размеры и другие параметры блочных струй, а также выявление обобщающих параметров, обеспечивающих применение сопловых устройств в широком диапазоне характеристик.

Выбор максимального расстояния между соплами бинарной системы обусловлен возможностями расходных характеристик вакуумного стенда, чтобы при максимально возможном давлении торможения и минимальном давлении окружающего пространства выполнялось условие (пользуясь терминологией работы [3]) D < h, т.е. поперечный размер каждой из струй D не превышал расстояния между соплами. В работе использован блок из одинаковых сверхзвуковых сопел с конусообразным профилем, расположенных по вертикали на расстоянии h, варьируемом от 20 до 2.4 мм. Диффузор с критическим диаметром $d_* = 0.272$ мм имеет диаметр выходного сечения $d_a = 1.44$ мм и длину $L_d = 3.30$ мм. Геометрическое число Маха на срезе сопла для аргона $M_a = 7.4$, для азота - $M_a = 5.1$.

Требования по объему статей не позволяют произвести детальный анализ полученных экспериментальных данных. На рис. 2 представлены результаты фотовизуализации бинарных струй азота, полученные при фиксированном давлении торможения ($P_0 = 200 \text{ кПа}$), одинаковых условиях конденсации (средний размер кластеров, оцененный по [21], $\langle S \rangle = 28$), трёх различных давлениях фонового газа, при возбуждении свечения электронным пучком, находящимся на расстоянии 25 мм от среза сверхзвукового сопла. Левая колонка (рис. 2a, 2b, 2д) – при расстоянии между осями сопел h = 20 мм, максимальном в данном исследовании. Правая колонка (рис. 26, 2г, 2е) – при минимальном h = 2.4 мм. На всех изображениях более светлая область соответствует большему числу излучающих частиц, пропорциональному произведению плотности числа частиц на плотность тока электронов.

Отметим, что измерения выполнены также и при нескольких промежуточных *h*.

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

a) $P_{\infty} = 5.32 \text{ Ha}, N^{0.5} = 194, \text{Re}_{L} = 43$

б) $P_{\infty} = 5.32 \ \Pi a, N^{0.5} = 194, \ \mathrm{Re}_{\mathrm{I}} = 43$

в) $P_{\infty} = 2.67 \Pi a$, $N^{0.5} = 274$, $\text{Re}_{\text{L}} = 31$

д) $P_{\infty} = 0.67 \text{ Па}, N^{0.5} = 548, \text{Re}_{T} = 16$ e) $P_{\infty} = 0.67 \text{ Ina}, N^{0.5} = 548, \text{Re}_{T} = 16$

Рис. 2. Азот. Фотовизуализация 2-х сопловой струи. $P_0 = 200$ кПа. Re_{*} = 8430, $\langle S \rangle = 28$

Как и следовало ожидать, изменение формы взаимодействующих струй при $h \sim D$ не отличается от ранее опубликованных результатов ([3-4]). Иная картина, которую нам не удалось обнаружить в работах других авторов, наблюдается при $h \ll D$. В этом случае две струи фактически сливаются в единую при любом значении P_{∞} и, соответственно, Re_L.

Принципиально другую структуру взаимодействия струй можно наблюдать при истечении аргона. Сравнение результатов фотовизуализации бинарных струй азота и приведенное на рис. 3, показало существенное различие аргона, формы взаимодействующих струй как на больших, так и на малых межсопловых расстояниях h.

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

в) $P_{\infty} = 2.67 \text{ Па}, N^{0.5} = 274, \text{ Re}_{\text{L}} = 44. \text{ Ar}$

Γ)
$$P_{\infty} = 2.67 \text{ Πa}, N^{0.5} = 274, \text{Re}_{\text{L}} = 31. \text{ N}_2$$

Рис. 3. Сравнение бинарных струй аргона (<S> = 305) и азота (<S> = 28). P_0 = 200 кПа. h = 20 мм.

На рис. З приведено сопоставление струй двух газов на одинаковом расстоянии между соплами, h = 20 мм. При этом воспроизводились подобные условия по P_{∞} и, соответственно, $N = P_0 / P_{\infty}$. Возбуждающий свечение электронный пучок находился на том же расстоянии от сопла, x = 25 мм. Как и в одиночных струях, в условиях интенсивного кластерообразования каждой ИЗ бинарных веретенообразных струй аргона приблизительно того же размера, что и в потоках азота, сопутствует внешняя область, названная нами «кластерным следом» [22]. Однако процесс взаимодействия струй аргона в условиях конденсации отличается от известного в азоте. Особенно заметно это при сравнении рис. Зв и Зг, а также Зд и Зе. Вместо единой центральной струи формируется узкая область, которая, как мы предполагаем, образуется преимущественно из кластерных частиц «следа» (более яркая центральная область). Обнаружен и ещё ряд особенностей (например, трансформация при определенных условиях светлой приосевой зоны в темную, с резким снижением числа излучающих частиц), которые, вследствие ограничений по объёму, здесь анализироваться не будут.

ЗАКЛЮЧЕНИЕ

Продемонстрирована возможность моделирования процессов истечения газов из реальных сопел управления космическими аппаратами в разреженной атмосфере различного состава на малогабаритном экспериментальном стенде. Отлажены варианты использования нескольких диагностических методов, обеспечивающих подробную информацию о процессе истечения. При использовании метода фотовизуализации рассмотрено истечение азота и аргона из блока двух одинаковых сверхзвуковых сопел. Обнаружены новые интересные эффекты, относящиеся к механизмам взаимодействия кластеризованных струй между собой и с окружающим их фоновым газом.

Работа выполнена в Институте теоретической и прикладной механики СО РАН с использованием оборудования ЦКП «Прикладная физика» Новосибирского государственного университета при финансовой поддержке Российского научного фонда (грант № 22-19-00750).

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

ЛИТЕРАТУРА

- 1. Лейтес Е.А., Труды ЦАГИ, Вып 1575 (1974).
- 2. Лейтес Е.А., Нестеров Ю.Н., Хомутов В.А., Труды ЦАГИ, Вып. 1672 (1975)
- 3. Ермолов В.И., Ленгран Ж.-К., Ребров А.К., Храмов Г.А., Экспериментальное исследование взаимодействия двух спутных гиперзвуковых струй, ПМТФ № 3 (1983)
- 4. Герасимов Ю.И., Ярыгин В.Н., Крылов А.Н., Сагдуллин Б.А., Моделирование структуры течения в составной струе за двумя двигателями, расположенными около корпуса космического аппарата, ТиА 16(3) 2009
- Zarvin A.E., Kalyada V.V., Madirbaev V.Zh., et al, Condensable supersonic jet facility for analyses of transient low-temperature gas kinetics and plasma chemistry of hydrocarbons, IEEE Transact. Pl. Sci. 45(5) (2017)
- 6. Бочкарев А.А., Великанов Е.Г., Ребров Р.Г. и др., Сб. «Экспериментальные методы в динамике разреженных газов» под ред. С.С. Кутателадзе. Новосибирск. Изд. Института теплофизики СО АН СССР (1974)
- 7. Приходько В.Г., Храмов Г.А., Ярыгин В.Н., Крупномасштабная криогенно-вакуумная установка для исследования газодинамических процессов, ПТЭ № 2 (1996)
- 8. Кутателадзе С.С., Кузнецов Л.И., Завьялов В.И., IV Всесоюз. конф. по динамике разреженных газов: Тез. докл. Новосибирск, ИТ СО АН СССР (1979)
- 9. Zarvin A.E., Yaskin A.S., Kalyada V.V., Effect of condensation on the length of strongly underexpanded jets exhausting into a rarefied submerged space, J. Appl. Mech. Tech. Phys. 59(1) (2018)
- Zarvin A.E., Yaskin A.S., Dubrovin K.A., Kalyada V.V., Visualization of low-density gasdynamic objects in full-scale processes modelling on small experimental plants, Vacuum 191 110409 (2021)
- 11. Dubrovin K.A., Zarvin A.E., Kalyada V.V., et al, Application of electron beam diagnostics for the study of rarefied clustered gas flows, Vacuum 218 112652 (2023)
- 12. Кисляков Н.И., Ребров А.К., Шарафутдинов Р.Г., Струи низкой плотности за звуковым соплом при больших перепадах давления, ПМТФ № 2 (1973)
- 13. Ярыгин В.Н., Герасимов Ю.И., Крылов А.Н., и др.. Газодинамика космических кораблей и орбитальных станций (обзор), ТиА 18(3) (2011)
- 14. Яскин А.С., Каляда В.В., Зарвин А.Е., Чиненов С.Т., Метод эффективного сканирования сверхзвуковых струй разреженных газов, ПТЭ № 3 (2020)
- 15. http://www.vmk.ru
- 16. Ващенко П.В., Лабусов В.А., Шиманский Р.В., Апертурные характеристики линеек фотодетекторов БЛПП-2000 и БЛПП-4000, Завод. лаб. Диагн. Матер. 88(1-2) (2022)
- Дубровин К.А., Зарвин А.Е., Яскин А.С., Каляда В.В., Труды XVII Междунар. НТК, Под ред.: Ю. Н. Дубнищева, Н. М. Скорняковой – М.: НТЦ Уник. Приб. РАН [Электр. изд.] (2023)
- 18. Зарвин А.Е., Каляда В.В., Яскин А.С., и др., Моделирование истечения сверхзвуковых струй в разреженную среду в импульсных режимах, ПТЭ. Принята к публикации 18.03.2024
- 19. Zarvin A., Yaskin A., Kalyada V., Dubrovin K. Features of the flow of a model liquid into a medium with a variable degree of rarefaction, J. Fluids Eng. 144(7) 071204 (2022)
- 20. Yaskin A.S., Zarvin A.E., Dubrovin K.A., Kalyada V.V., Bifurcation of a liquid micro-jet in a vacuum, Vacuum 198(4) 110904 (2022)

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232

- 21. Hagena O.F., Nucleation and growth of clusters in expanding nozzle flows, Surf. Sci. 106 101 (1981)
- 22. Dubrovin K.A., Zarvin A.E., Kalyada V.V., Yaskin A.S., Influence of the outflow initial parameters on the transverse dimensions of underexpanded argon jets in presence of condensation, Vacuum 207 111651 (2023)

СВЕДЕНИЯ ОБ АВТОРАХ

Зарвин Александр Евгеньевич – кандидат физико-математических наук, старший научный сотрудник (ВАК) (ORCID: 0000-0002-1973-5088). Институт теоретической и прикладной механики СО РАН, г. Новосибирск. Новосибирский государственный университет, г. Новосибирск. е-mail: zarvin@phys.nsu.ru

Яскин Александр Сергеевич – кандидат технических наук, доцент (ORCID: 0000-0003-0600-5366). Новосибирский государственный университет, г. Новосибирск. e-mail: yas@nsu.ru

Дубровин Кирилл Алексеевич – научный сотрудник (ORCID: 0000-0001-9655-1242). Институт теоретической и прикладной механики СО РАН, г. Новосибирск. Новосибирский государственный университет, г. Новосибирск. e-mail: k.dubrovin1@g.nsu.ru

Каляда Валерий Владимирович – ведущий электроник (ORCID: 0000-0003-2739-5017). Новосибирский государственный университет, г. Новосибирск. e-mail: v.kalyada@nsu.ru

А.Е. Зарвин, А.С. Яскин, К.А. Дубровин, В.В. Каляда Газодинамика истечения бинарных сверхзвуковых струй разреженных газов [Электронный ресурс] // Вестник РВО. – 2024. – № 4(6) (23.12.2024). – Режим доступа: https://www.vestnik-rvo.ru/issues/2024-12/6232